Fault Tolerance for Highly Available Internet Services:

Concept, Approaches, and Issues

By Narjess Ayari, Denis Barbaron, Laurent Lefevre and Pascale primet
Presented by Mingyu Liu

1.Introduction

- FT Concepts & Challenges
2. Fault Models & Failure Detection

- Approaches & Issues

3. Service Replications

- Concepts, Approaches & Issues

4. Failure Recovery

- Network, Transport, Session/Application Level Failovers

5. Conclusion

O FT Frameworks uses Resource

Redundancy to Ensure Availability

O Two Concepts
- Fault Detection
- Fault Recovery

O Three Challenges
- Resource Consumption
- Strength of Fault Tolerance
- Performance

Fault Tolerance Framework

Overhead of the
resource consumption

* CPU, memory, /O usage
* Bandwidth usage
* Energy usage

Resources —+

Existing FT frameworks

>

/

-

&
S)

Performance

Overhead of the

fault handling procedure

The strength of the fault
model

* Fault detection latency
* Replica launch latency
* Fault recovery latency

* Fault detection granularity
* Group communication style
* Fault recovery granularity

* Transparency of the failure recovery

Credit: Ayari, Narjess, et al. "Fault tolerance for highly available internet services: concepts, approaches,
and issues." Communications Surveys & Tutorials, IEEE 10.2 (2008): 34-46.

Redundancy in Cluster-based Architecture

O Two Redundancy Scenarios
- Passive Scenario
- Active Scenario

Client #1: 4@ Client #1 @
Ve e Master dispatcher
— | — |
Client #2: Client #2

> O

Replica Replica
#1 #2

I

ke

= A 2 = e

Client #n (i) Client #n (ii)

Credit: Ayari, Narjess, et al. "Fault tolerance for highly available internet services: concepts, approaches, and
issues." Communications Surveys & Tutorials, IEEE 10.2 (2008): 34-46.

VIRVl SI Fault Types and Models

O Fault Types
= C(Client-side fault
- concerns the client device
= Network-side fault
- includes corruption, delay, reordering, duplication, and loss of packets
= Server-side fault
- results in the silence or malfunctioning of the processing server

O Fault Models
= Byzantine fault
- occurs arbitrarily and maliciously, causing the system to behave incorrectly
= Fail-stop fault
- has a deterministic impact on a subsystem component, causing it die silently
- inactive during failure

Fault Models

U Requirement

It should detect failures as soon as they occur so that the framework can

Failure Detection Approaches

quickly trigger the failure recovery procedure.

It must be robust enough to ensure that only one error-free instance of the

service is running at once.

O Heartbeat Monitoring

Based on the explicit and periodic exchange of heartbeat messages between

replicas.

manager

Node #1 Node #n
Heartbeat
< messages >
Heartbeat

Credit: Ayari, Narjess, et al. "Fault tolerance for highly available internet services: concepts,

approaches, and issues." Communications Surveys & Tutorials, IEEE 10.2 (2008): 34-46.

RN/l Failure Detection Approaches (Con’t)

[Heartbeat Monitoring
= Two monitoring types:

The monitor process

ww function failure_detector(Host h)
function f._aul ure_detector(Host h) Send {Heartbeat_Hello} to the receiver
On receive {Heartbeat Hello} from h Wait &
return up; On receive {Heartbeat_Reply}
After n*d return up;
return crashed; After n*d
The monitored process return crashed;
procedure Availability_announce() The monitored process
Forever procedure Availability_announce()
Send{Heartbeat Hello} to the monitor Forever

On receive {Heartbeat_Hello}

LS Send{Heartbeat_Reply} to the monitor

Push-based heartbeat monitoring Pull-based heartbeat monitoring

Credit: Ayari, Narjess, et al. "Fault tolerance for highly available internet services: concepts,
approaches, and issues." Communications Surveys & Tutorials, IEEE 10.2 (2008): 34-46.

RN/l Failure Detection Approaches (Con’t)

O Problem with Heartbeat Monitoring

= Heartbeat monitoring is generally used to detect a node or link failure
= Failure could occur at a smaller level
- such as at process level

[Solution

= Watchdog timer is an inexpensive solution
- process being monitored must reset a timer before it expires
- otherwise, it is assumed to have failed
= Problems with Waterdog
- only deterministic runtime process can be monitored
- partially failed process can still reset the timer

MEJoll[@=Ie]aN Service Replication Concept

U Replication Concept
= Recovery of a service by replicating its related states
= When failure occurs The traffic is taken over by an elected backup node
0 Requirements
= Transparency
- needs to achieve a client-side transparent failover, already established
sessions need to be recovered in case of failure
= Qverhead
- measured by the cost of replication process during failure-free period
= Consistency
- needs replicas to maintain same view of the replicated states

1 Replication Approaches
= Leader/follower
= Active Replication
= Checkpointing
= Message Logging
= Hybrid Approach

Replication

Let a replica (leader) perform action
first;

Then leader notifies followers the
results;

Replicas update their state.

J Evaluation

Performs well with read-only files
Not appropriate for processes
modifying files concurrently
Performs poorly when large volumes
of info involved

Leader/follower Approach

Input

Leader

Follower

Output

Notification

Nelellfe=ile]al Active Approach

Q Idea

= All nodes to receive and concurrently
process the offered network traffic

= |ts objective is to ensure all replicas
maintain same state and guarantee
only one server replies to client

O Evaluation
= Leader does not need to forward data
to followers
= Further processing is required to
ensure consistency
- Atomic Multicast Protocol
- Intermediate Gateway or Proxy
- etc.

Input processing

- Atomic multicast
- Atomic broadcast

- Traffic sniffing
- Etc.

Primary

Backup

Output
consolidation

State is periodically copied either to standby servers or to a stable

storage

Incremental Checkpointing checkpoints each time change occurs

Neloll[€=|ife]aW Checkpointing Approach

Time-line Checkpointing checkpoints state periodically

A
Primary I I X ‘
Checkpoint Crash
Backup :Ii =2
Checkpoint
rollback

U Evaluation
Aggressive approach has high cost and adds latency

Time-line approach’s time-to-check value affects overhead and

number of rollback operations

To store or log all the messages delivered to the primary server on

stable storage or a replica

Dependency-based Logging flushes the log space once full
Optimistic Logging flushes periodically or at a given threshold

Nelollfeclie]al Message Logging Approach

Input processing

- Etc.

v

v

- Atomic multicast
- Atomic broadcast
- Traffic sniffing

Primary

Backup

(1) Log empty
(2) Msg logging

-

Output
processing

©

] Evaluation

Recover time takes longer than checkpointing approach

Neleoll[€=|ife]aW Replication Approaches Compare

= Active replication and Message logging need server to be deterministic
= Active replication has the best recovery time
= Message logging needs longest recovery time

Active replication

Message logging

Checkpointing

Resource usage

State preservation
frequency

Recovery time

Failure-free
overhead

Nondeterminism
handling

Need for message
interception

—Requires a dedicated backup

—States are created on the fly

—Short

—Active replication scheme
dependent

—Must be handled by the active
replication method

—-Depends on the primary/
backup topology

—Requires an idle backup

—Connection-level messages are logged
—Application-level messages are logged

—-Long (message log replay)

—Additional delay

—Issue for the connection and
application level

—Depends on the primary/backup
topology

—Frequent checkpoint is costly

—-With every state change, etc.

—Less than the time required in the
logging scheme

—The commit delay overhead

—Undefined

—Depends on the primary/backup
topology

Failure Recovery Concept

U Failure recovery is followed by detection
= |ts objective is to increase both availability and reliability
= Network identity takeover is the first step
= Further steps needed to meet reliability requirement
- Transport-level failover

- Session/Application level failover

1 Idea

Network-level Failover

Provide replicas the means to take over the network identity of the

legitimate processing server if it fails.
It provides an acceptable level of service availability

O Approaches

Link Aggregation Protocol
- allows the use of multiple Ethernet network interfaces or links in parallel

ARP-Spoofing-based network Identify Takeover
- backup node takes over the virtual IP by flooding gratuitous ARP message

Virtual Router Redundancy Protocol

- virtual router abstracts a cluster of routers servicing hosts in the same network
Static NAT-based IP takeover

- traffic first offered to the entry point before assigning to a server

Transport-level failover

1 Idea

= Should the primary server fail, the already established flow is taken over
by an elected backup while avoiding its interruption.
O Approaches

= FT-TCP

= Transparent Connection Failover

= ST-TCP
Session/Application Level Failover
U Idea

= Require the elected replica to failback each associated state
L Approaches
= Synchronize the primary node’s system call at each replica
= |dentify nondeterministic behaviour at the application level and synchronizing
at those point
= Use checkpointing to save the primary’s application level state

Paper Conclusion

U This paper provides a comprehensive overview of the building blocks of fault
tolerance frameworks.

= Fault model and failure detection approaches
- different existing Internet server fault models
- state-of-art failure detection approaches

= Service replication concepts, approaches and issues
- different states required to be replicated
- replication approaches and their major limitations

= Failure recovery approaches and issues

- failover at Network, Transport, Session and Application level

Questions Raised

O Why, as shown in FT framework constraints figure, the increase of resource
does not affect the performance and fault tolerance?

O Why the current FT frameworks lacks transport- nor session/application level
failover support despite of the increasing need of next-generation Internet
services?

O How content inspection can be used to identify the source of nondeterministic
behavior at Application level failover?

