
Fault Tolerance for Highly Available Internet Services:

Concept, Approaches, and Issues

By Narjess Ayari, Denis Barbaron, Laurent Lefevre and Pascale primet

Presented by Mingyu Liu

Outlines

1.Introduction
 - FT Concepts & Challenges

2. Fault Models & Failure Detection
 - Approaches & Issues

3. Service Replications
 - Concepts, Approaches & Issues

4. Failure Recovery
 - Network, Transport, Session/Application Level Failovers

5. Conclusion

Intro Fault Tolerance Framework

 FT Frameworks uses Resource
Redundancy to Ensure Availability

 Two Concepts
 - Fault Detection
 - Fault Recovery

 Three Challenges
 - Resource Consumption
 - Strength of Fault Tolerance
 - Performance

Credit: Ayari, Narjess, et al. "Fault tolerance for highly available internet services: concepts, approaches,
and issues." Communications Surveys & Tutorials, IEEE 10.2 (2008): 34-46.

Intro Redundancy in Cluster-based Architecture

 Two Redundancy Scenarios
 - Passive Scenario
 - Active Scenario

Credit: Ayari, Narjess, et al. "Fault tolerance for highly available internet services: concepts, approaches, and
issues." Communications Surveys & Tutorials, IEEE 10.2 (2008): 34-46.

Fault Models Fault Types and Models

 Fault Types
 Client-side fault
 - concerns the client device
 Network-side fault
 - includes corruption, delay, reordering, duplication, and loss of packets
 Server-side fault
 - results in the silence or malfunctioning of the processing server

 Fault Models

 Byzantine fault
 - occurs arbitrarily and maliciously, causing the system to behave incorrectly
 Fail-stop fault
 - has a deterministic impact on a subsystem component, causing it die silently
 - inactive during failure

Fault Models Failure Detection Approaches

 Requirement
 It should detect failures as soon as they occur so that the framework can

quickly trigger the failure recovery procedure.
 It must be robust enough to ensure that only one error-free instance of the

service is running at once.

 Heartbeat Monitoring
 Based on the explicit and periodic exchange of heartbeat messages between

replicas.

Credit: Ayari, Narjess, et al. "Fault tolerance for highly available internet services: concepts,
approaches, and issues." Communications Surveys & Tutorials, IEEE 10.2 (2008): 34-46.

Fault Models Failure Detection Approaches (Con’t)

 Heartbeat Monitoring

 Two monitoring types:

Credit: Ayari, Narjess, et al. "Fault tolerance for highly available internet services: concepts,
approaches, and issues." Communications Surveys & Tutorials, IEEE 10.2 (2008): 34-46.

Pull-based heartbeat monitoring Push-based heartbeat monitoring

Fault Models Failure Detection Approaches (Con’t)

 Problem with Heartbeat Monitoring

 Heartbeat monitoring is generally used to detect a node or link failure
 Failure could occur at a smaller level
 - such as at process level

 Solution

 Watchdog timer is an inexpensive solution
 - process being monitored must reset a timer before it expires
 - otherwise, it is assumed to have failed
 Problems with Waterdog
 - only deterministic runtime process can be monitored
 - partially failed process can still reset the timer

Replication Service Replication Concept

 Replication Concept
 Recovery of a service by replicating its related states
 When failure occurs The traffic is taken over by an elected backup node

 Requirements
 Transparency
 - needs to achieve a client-side transparent failover, already established
 sessions need to be recovered in case of failure
 Overhead

- measured by the cost of replication process during failure-free period
 Consistency
 - needs replicas to maintain same view of the replicated states

 Replication Approaches

 Leader/follower
 Active Replication
 Checkpointing
 Message Logging
 Hybrid Approach

Replication Leader/follower Approach

 Idea

 Let a replica (leader) perform action
first;

 Then leader notifies followers the
results;

 Replicas update their state.

 Evaluation
 Performs well with read-only files
 Not appropriate for processes

modifying files concurrently
 Performs poorly when large volumes

of info involved

Replication Active Approach

 Idea

 All nodes to receive and concurrently
process the offered network traffic

 Its objective is to ensure all replicas
maintain same state and guarantee
only one server replies to client

 Evaluation
 Leader does not need to forward data

to followers
 Further processing is required to

ensure consistency
 - Atomic Multicast Protocol
 - Intermediate Gateway or Proxy
 - etc.

Replication Checkpointing Approach

 Idea

 State is periodically copied either to standby servers or to a stable
storage

 Incremental Checkpointing checkpoints each time change occurs
 Time-line Checkpointing checkpoints state periodically

 Evaluation

 Aggressive approach has high cost and adds latency
 Time-line approach’s time-to-check value affects overhead and

number of rollback operations

Replication Message Logging Approach

 Idea

 To store or log all the messages delivered to the primary server on
stable storage or a replica

 Dependency-based Logging flushes the log space once full
 Optimistic Logging flushes periodically or at a given threshold

 Evaluation
 Recover time takes longer than checkpointing approach

Replication Replication Approaches Compare

 Active replication and Message logging need server to be deterministic
 Active replication has the best recovery time
 Message logging needs longest recovery time

Failover Failure Recovery Concept

 Failure recovery is followed by detection

 Its objective is to increase both availability and reliability

 Network identity takeover is the first step

 Further steps needed to meet reliability requirement

 - Transport-level failover

 - Session/Application level failover

Failover Network-level Failover

 Idea

 Provide replicas the means to take over the network identity of the
legitimate processing server if it fails.

 It provides an acceptable level of service availability

 Approaches
 Link Aggregation Protocol
 - allows the use of multiple Ethernet network interfaces or links in parallel

 ARP-Spoofing-based network Identify Takeover
 - backup node takes over the virtual IP by flooding gratuitous ARP message
 Virtual Router Redundancy Protocol
 - virtual router abstracts a cluster of routers servicing hosts in the same network

 Static NAT-based IP takeover
 - traffic first offered to the entry point before assigning to a server

Failover

Transport-level failover

 Idea
 Should the primary server fail, the already established flow is taken over

by an elected backup while avoiding its interruption.
 Approaches

 FT-TCP
 Transparent Connection Failover
 ST-TCP

Session/Application Level Failover

 Idea
 Require the elected replica to failback each associated state

 Approaches
 Synchronize the primary node’s system call at each replica
 Identify nondeterministic behaviour at the application level and synchronizing

at those point
 Use checkpointing to save the primary’s application level state

Conclusion Paper Conclusion

 This paper provides a comprehensive overview of the building blocks of fault

tolerance frameworks.

 Fault model and failure detection approaches

 - different existing Internet server fault models

 - state-of-art failure detection approaches

 Service replication concepts, approaches and issues

 - different states required to be replicated

 - replication approaches and their major limitations

 Failure recovery approaches and issues

- failover at Network, Transport, Session and Application level

Conclusion Questions Raised

 Why, as shown in FT framework constraints figure, the increase of resource

does not affect the performance and fault tolerance?

 Why the current FT frameworks lacks transport- nor session/application level
failover support despite of the increasing need of next-generation Internet
services?

 How content inspection can be used to identify the source of nondeterministic
behavior at Application level failover?

